Gauge and Tube (also known as Trailing Hose or P-Q) Surveys have been widely used in underground mine ventilation for frictional pressure loss surveys and ventilation model calibrations for a very long time. They are one of the most basic types of underground ventilation measurement. However, there are many factors that have been contributing to and accelerating the decline of this type of survey and underground measurements more generally. In most cases, barometric pressure surveys are now the preferred method for validating ventilation circuits and models and can be completed more quickly, more cheaply, with fewer personnel and with less disruption to mine operations. In addition, the growing use of real-time instrumentation of the ventilation system combined with Big Data analysis techniques is reducing the amount of manual measurements and other data collection required. Artificial Intelligence is also likely to assist in the future with providing statistically reliable advice regarding the location, type and frequency of underground measurements, as well as answers to many other ventilation questions including validating ventilation models and providing site-specific advice on management of upset conditions such as fan or ventilation control failures or outages, fires or explosions. This paper discusses the factors behind these trends and identifies some of the advantages and disadvantages of both gauge and tube and barometric pressure surveys, as well as the broader potential use of Big Data and Artificial Intelligence to assist with decisions regarding underground measurements generally and assisting with other ventilation-related advice