Large-opening stone mines are characterized by entry sizes twice or thrice the size of typical underground coal or metal/nonmetal mines. Due to the large openings, the volume of air needed to ventilate these mines is significantly higher than in coal or metal/nonmetal mines. This leads to low air velocities with low static pressure drop. Airflow in the mine mostly relies on natural ventilation and auxiliary fans at the working face. The National Institute for Occupational Safety and Health (NIOSH) is conducting research on the ventilation of large-opening stone mines to reduce worker exposure to dust and other contaminants such as diesel particulate matter (DPM). To understand airflow in a large-opening mine, we conducted a numerical modeling study using computational fluid dynamics (CFD). This paper presents the results from the CFD modeling of airflow in a large-opening stone mine. The CFD model is calibrated against the data previously collected at a large-opening stone mine. The team ran different scenarios with fan placement along with the movement of truck to simulate how effectively air is moving in the mine. |